Fork me on GitHub

二项式系数及其反演

二项式系数及其反演

二项式系数&二项式定理

了解标题之前,我们先要花一些时间复习一下普通的二项式系数:

$\left( \begin{array}{c}n\\k\end{array} \right) = \dfrac{\Gamma (n + 1)}{\Gamma (k + 1)\Gamma (n - k + 1)}$

我们对它研究得非常多,例如经典的二项式定理:

${(x + y)^n} = \left( \begin{array}{c}n\\0\end{array} \right){x^n}{y^0} + \left( \begin{array}{c}n\\1\end{array} \right){x^{n - 1}}{y^1} + \left( \begin{array}{c}n\\2\end{array} \right){x^{n - 2}}{y^2} + \cdots + \left( \begin{array}{c}n\\n - 1\end{array} \right){x^1}{y^{n - 1}} + \left( \begin{array}{c}n\\n\end{array} \right){x^0}{y^n}$

写成和式的形式,也就是

${(x + y)^n} = \sum\limits_{k = 0}^n {\left( \begin{array}{c}n\\k\end{array} \right)} {x^{n - k}}{y^k} = \sum\limits_{k = 0}^n {\left( \begin{array}{c}n\\k\end{array} \right)} {x^k}{y^{n - k}}$

证明挺简单的,想必大家都会,这里不会的可以来谈人生了QwQ

广义二项式定理

这玩意怎么推广?

${(x + y)^\alpha } = \mathop \sum \limits_{k = 0}^\infty \left( \begin{array}{c}\alpha \\k\end{array} \right){x^{\alpha - k}}{y^k}$

第一种证明

证明也非常简单

它可以看成$(1+x)^\alpha$的幂级数展开

显然函数当$\alpha>0$的时候是analytic的,所以可以通过多次求导得到幂级数中的项:

$f(x)=\sum_\limits{n\geq 0}\dfrac{f^{(n)}(0)}{n!}x^n$

令$f(x)=(1+x)^\alpha$,多次求导可得

${f^{(n)}}(x) = \alpha (\alpha - 1) \cdots \cdots (\alpha - n + 1){(1 + x)^{a - n}}$

当然这个只对$\alpha>0$有效,对于其它情况,可以用幂级数倒数的性质来证明。

这个证明可能用的定理太高级,其实还是组合式的比较好,但是可能就比较长就是了……

第二种证明

还是原来的函数$f(x)$,假定它能展开成幂级数$f(x) = \sum\limits_{n \ge 0} {a_n} {x^n}$

然后我们无比震惊地发现它满足如下的微分方程:

$(1 + x)f’(x) = \alpha f(x),f(0) = 1$

这个微分方程又可以写成系数之间的递推式:

${a_0} = 1,\sum\limits_{n \ge 0} {((n + 1){a_{n + 1}} + n{a_n})x = \sum\limits_{n \ge 0} {\alpha {a_n}{x^n}} } $

然后就有

${a_0} = 1,\forall n,n{a_n} = (\alpha - n - 1){a_{n + 1}}$

然后解递推方程咯…..

如果你还是看不懂,可以去维基百科看详细过程解答。

组合证明

百度百科-二项式定理上面有写,如果你这个都看不懂说明你废了。。

二项式定理的一些小应用

  • 当然是帮助证明东西

证明组合恒等式

比如证明

可以考虑恒等式

然后证明就很显然了

证明自然数幂求和公式:

我没有看懂(留坑),但是有一篇博客系统地讲述了自然数幂和的各种求法:解决自然数幂和的方法

二项式反演!

前置定义&定理

设$x$为任意复数,$n$是非负整数

对于广义二项式系数$\left( {\begin{array}{*{20}{c}}x\\n\end{array}} \right)$,有Vandermonde卷积公式:

( x+y n )= k=0 n ( x k ) ( y nk ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaabmaapaqaauaabeqa ceaaaeaapeGaamiEaiabgUcaRiaadMhaa8aabaWdbiaad6gaaaaaca GLOaGaayzkaaGaeyypa0ZaaabCa8aabaWdbmaabmaapaqaauaabeqa ceaaaeaapeGaamiEaaWdaeaapeGaam4AaaaaaiaawIcacaGLPaaaaS WdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0Gaeyye IuoakmaabmaapaqaauaabeqaceaaaeaapeGaamyEaaWdaeaapeGaam OBaiabgkHiTiaadUgaaaaacaGLOaGaayzkaaaaaa@5595@

以及展开形式(expand form)

(1+t) x = n=0 ( x n ) t n , (1t) x = n=0 x n t n MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbiaacIcacaaIXaGaey4k aSIaamiDaiaacMcapaWaaWbaaSqabeaapeGaamiEaaaakiabg2da9m aaqahapaqaa8qadaqadaWdaeaafaqabeGabaaabaWdbiaadIhaa8aa baWdbiaad6gaaaaacaGLOaGaayzkaaaal8aabaWdbiaad6gacqGH9a qpcaaIWaaapaqaa8qacqGHEisPa0GaeyyeIuoakiaadshapaWaaWba aSqabeaapeGaamOBaaaakiaacYcacaGGOaGaaGymaiabgkHiTiaads hacaGGPaWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGccqGH9aqp daaeWbWdaeaapeWaaaWaa8aabaqbaeqabiqaaaqaa8qacaWG4baapa qaa8qacaWGUbaaaaGaayzkJiaawQYiaaWcpaqaa8qacaWGUbGaeyyp a0JaaGimaaWdaeaapeGaeyOhIukaniabggHiLdGccaWG0bWdamaaCa aaleqabaWdbiaad6gaaaaaaa@6757@

其中$\left\langle {\begin{array}{*{20}{c}}x\\n\end{array}} \right\rangle = \dfrac{x(x + 1) \cdots (x + n - 1)}{n!}$

且有

x+y n = k=0 n x k y nk MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaamaapaqaauaabeqa ceaaaeaapeGaamiEaiabgUcaRiaadMhaa8aabaWdbiaad6gaaaaaca GLPmIaayPkJaGaeyypa0ZaaabCa8aabaWdbmaaamaapaqaauaabeqa ceaaaeaapeGaamiEaaWdaeaapeGaam4AaaaaaiaawMYicaGLQmcaaS WdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0Gaeyye IuoakmaaamaapaqaauaabeqaceaaaeaapeGaamyEaaWdaeaapeGaam OBaiabgkHiTiaadUgaaaaacaGLPmIaayPkJaaaaa@566A@
  • 定义1

$x$为任意数,$n+1$阶矩阵$P_n[x],Q_n[x],D_k(k \in N^*)$分别定义

( P n [x]) ij ={ ( x ij ), ij 0 otherwise ( Q n [x]) ij ={ x ij , ij 0 otherwise ( D k ) ij ={ 1, i=j+k 0, otherwise MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaafaqaaeWabaaabaaeaaaaaaaaa8qacaGG OaGaamiua8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGBbGaam iEaiaac2facaGGPaWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaa k8qacqGH9aqpdaGabaWdaeaafaqabeGacaaabaWdbmaabmaapaqaau aabeqaceaaaeaapeGaamiEaaWdaeaapeGaamyAaiabgkHiTiaadQga aaaacaGLOaGaayzkaaGaaiilaaWdaeaapeGaamyAaiabgwMiZkaadQ gaa8aabaWdbiaaicdaa8aabaWdbiaad+gacaWG0bGaamiAaiaadwga caWGYbGaam4DaiaadMgacaWGZbGaamyzaaaaaiaawUhaaaWdaeaape GaaiikaiaadgfapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4w aiaadIhacaGGDbGaaiyka8aadaWgaaWcbaWdbiaadMgacaWGQbaapa qabaGcpeGaeyypa0Zaaiqaa8aabaqbaeqabiGaaaqaa8qadaaadaWd aeaafaqabeGabaaabaWdbiaadIhaa8aabaWdbiaadMgacqGHsislca WGQbaaaaGaayzkJiaawQYiaiaacYcaa8aabaWdbiaadMgacqGHLjYS caWGQbaapaqaa8qacaaIWaaapaqaa8qacaWGVbGaamiDaiaadIgaca WGLbGaamOCaiaadEhacaWGPbGaam4CaiaadwgaaaaacaGL7baaa8aa baWdbiaacIcacaWGebWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbi aacMcapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiabg2da 9maaceaapaqaauaabeqaciaaaeaapeGaaGymaiaacYcaa8aabaWdbi aadMgacqGH9aqpcaWGQbGaey4kaSIaam4AaaWdaeaapeGaaGimaiaa cYcaa8aabaWdbiaad+gacaWG0bGaamiAaiaadwgacaWGYbGaam4Dai aadMgacaWGZbGaamyzaaaaaiaawUhaaaaaaaa@9560@

显然,$P_n[0]=Q_n[0]=D_0=I_{n+1}$($I_{n+1}$阶单位矩阵)。设$D_1=D$,那么$D_k=D^k,k \in N^*$。设$(x)_k=\dfrac{\Gamma(x+1)}{\Gamma(k+1)}$,${\langle x \rangle}_k=\dfrac{\Gamma(x+k)}{\Gamma(x)}$,由矩阵乘法和Stirling数的性质,我们得到了一个定理:

  • 定理1

$x$为任意数,则有

P n [x]= k=0 n ( x k ) D k = k=0 n (x) k Γ(k+1) D k = k=0 n i=k n [ i k ] Γ(i+1) D i x k , Q n [x]= k=0 n x k Γ(k+1) D k = k=0 n i=k n (1) i+k [ i k ] Γ(i+1) D i x k MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaafaqaaeGabaaabaaeaaaaaaaaa8qacaWG qbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfacaWG4bGaai yxaiabg2da9maaqahapaqaa8qadaqadaWdaeaafaqabeGabaaabaWd biaadIhaa8aabaWdbiaadUgaaaaacaGLOaGaayzkaaaal8aabaWdbi aadUgacqGH9aqpcaaIWaaapaqaa8qacaWGUbaaniabggHiLdGccaWG ebWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiabg2da9maaqahapa qaa8qadaWcaaWdaeaapeGaaiikaiaadIhacaGGPaWdamaaBaaaleaa peGaam4AaaWdaeqaaaGcbaWdbiabfo5ahjaacIcacaWGRbGaey4kaS IaaGymaiaacMcaaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaapaqa a8qacaWGUbaaniabggHiLdGccaWGebWdamaaCaaaleqabaWdbiaadU gaaaGccqGH9aqpdaaeWbWdaeaapeWaaabCa8aabaWdbmaalaaapaqa a8qadaWadaWdaeaafaqabeGabaaabaWdbiaadMgaa8aabaWdbiaadU gaaaaacaGLBbGaayzxaaaapaqaa8qacqqHtoWrcaGGOaGaamyAaiab gUcaRiaaigdacaGGPaaaaaWcpaqaa8qacaWGPbGaeyypa0Jaam4Aaa WdaeaapeGaamOBaaqdcqGHris5aaWcpaqaa8qacaWGRbGaeyypa0Ja aGimaaWdaeaapeGaamOBaaqdcqGHris5aOGaamira8aadaahaaWcbe qaa8qacaWGPbaaaOGaamiEa8aadaahaaWcbeqaa8qacaWGRbaaaOGa aiilaaWdaeaapeGaamyua8aadaWgaaWcbaWdbiaad6gaa8aabeaak8 qacaGGBbGaamiEaiaac2facqGH9aqpdaaeWbWdaeaapeWaaSaaa8aa baWdbiabgMYiHlaadIhacqGHQms8paWaaSbaaSqaa8qacaWGRbaapa qabaaakeaapeGaeu4KdCKaaiikaiaadUgacqGHRaWkcaaIXaGaaiyk aaaaaSWdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0 GaeyyeIuoakiaadseapaWaaWbaaSqabeaapeGaam4Aaaaakiabg2da 9maaqahapaqaa8qadaaeWbWdaeaapeGaaiikaiabgkHiTiaaigdaca GGPaWdamaaCaaaleqabaWdbiaadMgacqGHRaWkcaWGRbaaaaWdaeaa peGaamyAaiabg2da9iaadUgaa8aabaWdbiaad6gaa0GaeyyeIuoaaS WdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0Gaeyye Iuoakmaalaaapaqaa8qadaWadaWdaeaafaqabeGabaaabaWdbiaadM gaa8aabaWdbiaadUgaaaaacaGLBbGaayzxaaaapaqaa8qacqqHtoWr caGGOaGaamyAaiabgUcaRiaaigdacaGGPaaaaiaadseapaWaaWbaaS qabeaapeGaamyAaaaakiaadIhapaWaaWbaaSqabeaapeGaam4Aaaaa aaaaaa@BC36@

其中$\left[ {\begin{array}{*{20}{c}}n\\k\end{array}} \right]$是第一类无符号Stirling数。

  • 定理2

$\forall x,y \in \mathbb{R}$,则有$\begin{array}{l}P_n[x + y] = P_n[x]P_n[y],\\{Q_n}[x + y] = {Q_n}[x]{Q_n}[y].\end{array}$

证明:当$i \geq j$时,

( P n [x] P n [y]) ij = k=j i ( x ik ) ( y kj )=( x+y ij )= ( P n [x+y]) ij MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbiaacIcacaWGqbWdamaa BaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfacaWG4bGaaiyxaiaadc fapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4waiaadMhacaGG DbGaaiyka8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaey ypa0ZaaabCa8aabaWdbmaabmaapaqaauaabeqaceaaaeaapeGaamiE aaWdaeaapeGaamyAaiabgkHiTiaadUgaaaaacaGLOaGaayzkaaaal8 aabaWdbiaadUgacqGH9aqpcaWGQbaapaqaa8qacaWGPbaaniabggHi LdGcdaqadaWdaeaafaqabeGabaaabaWdbiaadMhaa8aabaWdbiaadU gacqGHsislcaWGQbaaaaGaayjkaiaawMcaaiabg2da9maabmaapaqa auaabeqaceaaaeaapeGaamiEaiabgUcaRiaadMhaa8aabaWdbiaadM gacqGHsislcaWGQbaaaaGaayjkaiaawMcaaiabg2da9iaacIcacaWG qbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfacaWG4bGaey 4kaSIaamyEaiaac2facaGGPaWdamaaBaaaleaapeGaamyAaiaadQga a8aabeaaaaa@7385@

推论:$\forall x,y \in \mathbb{R},m \in \mathbb{Z}$,有$\begin{array}{l}P_n{[x]^{ - 1}} = P_n[ - x],\\P_n{[x]^m} = P_n[mx],\\P_n[x] = P_n{[\frac{x}{m}]^m}.\end{array}$

  • 定义2

$\forall x,y \in \mathbb{R}$,$n+1$阶矩阵$P_n[x,y],Q_n[x,y]$分别定义为

( P n [x,y]) ij ={ ( x ij ) y ij 0 ,ij; ( Q n [x,y]) ij ={ x ij y ij 0 ,ij. MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaafaqaaeGabaaabaaeaaaaaaaaa8qacaGG OaGaamiua8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGBbGaam iEaiaacYcacaWG5bGaaiyxaiaacMcapaWaaSbaaSqaa8qacaWGPbGa amOAaaWdaeqaaOWdbiabg2da9maaceaapaqaauaabeqaceaaaeaape WaaeWaa8aabaqbaeqabiqaaaqaa8qacaWG4baapaqaa8qacaWGPbGa eyOeI0IaamOAaaaaaiaawIcacaGLPaaacaWG5bWdamaaCaaaleqaba WdbiaadMgacqGHsislcaWGQbaaaaGcpaqaa8qacaaIWaaaaaGaay5E aaGaaiilaiaadMgacqGHLjYScaWGQbGaai4oaaWdaeaapeGaaiikai aadgfapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4waiaadIha caGGSaGaamyEaiaac2facaGGPaWdamaaBaaaleaapeGaamyAaiaadQ gaa8aabeaak8qacqGH9aqpdaGabaWdaeaafaqabeGabaaabaWdbmaa amaapaqaauaabeqaceaaaeaapeGaamiEaaWdaeaapeGaamyAaiabgk HiTiaadQgaaaaacaGLPmIaayPkJaGaamyEa8aadaahaaWcbeqaa8qa caWGPbGaeyOeI0IaamOAaaaaaOWdaeaapeGaaGimaaaaaiaawUhaai aacYcacaWGPbGaeyyzImRaamOAaiaac6caaaaaaa@7824@
  • 定理3

$\forall x,y,z \in \mathbb{R}, m \in \mathbb{Z}$,有

{ P n [x,z] P n [y,z]= P n [x+y,z], Q n [x,z] Q n [y,z]= Q n [x+y,z]. { P n [x,y] m = P n [mx,y], Q n [x,y] m = Q n [mx,y]. MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaafaqaaeGabaaabaaeaaaaaaaaa8qadaGa baWdaeaafaqabeGabaaabaWdbiaadcfapaWaaSbaaSqaa8qacaWGUb aapaqabaGcpeGaai4waiaadIhacaGGSaGaamOEaiaac2facaWGqbWd amaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfacaWG5bGaaiilai aadQhacaGGDbGaeyypa0Jaamiua8aadaWgaaWcbaWdbiaad6gaa8aa beaak8qacaGGBbGaamiEaiabgUcaRiaadMhacaGGSaGaamOEaiaac2 facaGGSaaapaqaa8qacaWGrbWdamaaBaaaleaapeGaamOBaaWdaeqa aOWdbiaacUfacaWG4bGaaiilaiaadQhacaGGDbGaamyua8aadaWgaa WcbaWdbiaad6gaa8aabeaak8qacaGGBbGaamyEaiaacYcacaWG6bGa aiyxaiabg2da9iaadgfapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpe Gaai4waiaadIhacqGHRaWkcaWG5bGaaiilaiaadQhacaGGDbGaaiOl aaaaaiaawUhaaaWdaeaapeWaaiqaa8aabaqbaeqabiqaaaqaa8qaca WGqbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfacaWG4bGa aiilaiaadMhacaGGDbWdamaaCaaaleqabaWdbiaad2gaaaGccqGH9a qpcaWGqbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfacaWG TbGaamiEaiaacYcacaWG5bGaaiyxaiaacYcaa8aabaWdbiaadgfapa WaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4waiaadIhacaGGSaGa amyEaiaac2fapaWaaWbaaSqabeaapeGaamyBaaaakiabg2da9iaadg fapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4waiaad2gacaWG 4bGaaiilaiaadMhacaGGDbGaaiOlaaaaaiaawUhaaaaaaaa@93D4@

{ P n [x,y] 1 = P n [x,y], P n [x,1]= P n [x], P n [0,1]= I n+1 ; Q n [x,y] 1 = Q n [x,y], Q n [x,1]= Q n [x], Q n [0,1]= I n+1 . MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaceaapaqaauaabeqa ceaaaeaapeGaamiua8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qaca GGBbGaamiEaiaacYcacaWG5bGaaiyxa8aadaahaaWcbeqaa8qacqGH sislcaaIXaaaaOGaeyypa0Jaamiua8aadaWgaaWcbaWdbiaad6gaa8 aabeaak8qacaGGBbGaeyOeI0IaamiEaiaacYcacaWG5bGaaiyxaiaa cYcacaWGqbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacUfaca WG4bGaaiilaiaaigdacaGGDbGaeyypa0Jaamiua8aadaWgaaWcbaWd biaad6gaa8aabeaak8qacaGGBbGaamiEaiaac2facaGGSaGaamiua8 aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGBbGaaGimaiaacYca caaIXaGaaiyxaiabg2da9iaadMeapaWaaSbaaSqaa8qacaWGUbGaey 4kaSIaaGymaaWdaeqaaOWdbiaacUdaa8aabaWdbiaadgfapaWaaSba aSqaa8qacaWGUbaapaqabaGcpeGaai4waiaadIhacaGGSaGaamyEai aac2fapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiabg2da9iaa dgfapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4waiabgkHiTi aadIhacaGGSaGaamyEaiaac2facaGGSaGaamyua8aadaWgaaWcbaWd biaad6gaa8aabeaak8qacaGGBbGaamiEaiaacYcacaaIXaGaaiyxai abg2da9iaadgfapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai4w aiaadIhacaGGDbGaaiilaiaadgfapaWaaSbaaSqaa8qacaWGUbaapa qabaGcpeGaai4waiaaicdacaGGSaGaaGymaiaac2facqGH9aqpcaWG jbWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaak8qaca GGUaaaaaGaay5Eaaaaaa@960D@

反演开始!

还记得上面的推论吗?我们由它可以得到如下定理:

  • 定理4

$\forall x,y \in \mathbb{R}​$,设$\{a_n\}_{n\geq 0}=\{a_n(x,y)\}_{n\geq 0}​$和$\{b_n\}_{n\geq 0}=\{b_n(x,y)\}_{n\geq 0}​$为两个函数序列

那么我们有

a n (x,y)= k=0 n ( x k ) b nk (x,y) b n (x,y)= k=0 n ( x nk ) a nk (x,y) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqa a8qacaWGUbaapaqabaGcpeGaaiikaiaadIhacaGGSaGaamyEaiaacM cacqGH9aqpdaaeWbWdaeaapeWaaeWaa8aabaqbaeqabiqaaaqaa8qa caWG4baapaqaa8qacaWGRbaaaaGaayjkaiaawMcaaaWcpaqaa8qaca WGRbGaeyypa0JaaGimaaWdaeaapeGaamOBaaqdcqGHris5aOGaamOy a8aadaWgaaWcbaWdbiaad6gacqGHsislcaWGRbaapaqabaGcpeGaai ikaiaadIhacaGGSaGaamyEaiaacMcacqGHuhY2caWGIbWdamaaBaaa leaapeGaamOBaaWdaeqaaOWdbiaacIcacaWG4bGaaiilaiaadMhaca GGPaGaeyypa0ZaaabCa8aabaWdbmaabmaapaqaauaabeqaceaaaeaa peGaeyOeI0IaamiEaaWdaeaapeGaamOBaiabgkHiTiaadUgaaaaaca GLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaapaqaa8qa caWGUbaaniabggHiLdGccaWGHbWdamaaBaaaleaapeGaamOBaiabgk HiTiaadUgaa8aabeaak8qacaGGOaGaamiEaiaacYcacaWG5bGaaiyk aaaa@778B@

也就是

a n (x,y)= k=0 n ( x nk ) b nk (x,y) b n (x,y)= k=0 n ( x nk ) a nk (x,y) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqa a8qacaWGUbaapaqabaGcpeGaaiikaiaadIhacaGGSaGaamyEaiaacM cacqGH9aqpdaaeWbWdaeaapeWaaeWaa8aabaqbaeqabiqaaaqaa8qa caWG4baapaqaa8qacaWGUbGaeyOeI0Iaam4AaaaaaiaawIcacaGLPa aaaSWdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0Ga eyyeIuoakiaadkgapaWaaSbaaSqaa8qacaWGUbGaeyOeI0Iaam4Aaa WdaeqaaOWdbiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyi1HSTa amOya8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGOaGaamiEai aacYcacaWG5bGaaiykaiabg2da9maaqahapaqaa8qadaqadaWdaeaa faqabeGabaaabaWdbiabgkHiTiaadIhaa8aabaWdbiaad6gacqGHsi slcaWGRbaaaaGaayjkaiaawMcaaaWcpaqaa8qacaWGRbGaeyypa0Ja aGimaaWdaeaapeGaamOBaaqdcqGHris5aOGaamyya8aadaWgaaWcba Wdbiaad6gacqGHsislcaWGRbaapaqabaGcpeGaaiikaiaadIhacaGG SaGaamyEaiaacMcaaaa@796B@

证明

设$a = {({a_0},{a_1}, \cdots ,{a_n})^T},b = {({b_0},{b_1}, \cdots ,{b_n})^T}$,注意到$a = P_n[x] \Leftrightarrow b = P_n[ - x]$

a i = j=0 i ( x ij ) b j b i = j=0 i ( x ij ) a j MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqa a8qacaWGPbaapaqabaGcpeGaeyypa0ZaaabCa8aabaWdbmaabmaapa qaauaabeqaceaaaeaapeGaamiEaaWdaeaapeGaamyAaiabgkHiTiaa dQgaaaaacaGLOaGaayzkaaaal8aabaWdbiaadQgacqGH9aqpcaaIWa aapaqaa8qacaWGPbaaniabggHiLdGccaWGIbWdamaaBaaaleaapeGa amOAaaWdaeqaaOWdbiabgsDiBlaadkgapaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaeyypa0ZaaabCa8aabaWdbmaabmaapaqaauaabeqa ceaaaeaapeGaeyOeI0IaamiEaaWdaeaapeGaamyAaiabgkHiTiaadQ gaaaaacaGLOaGaayzkaaaal8aabaWdbiaadQgacqGH9aqpcaaIWaaa paqaa8qacaWGPbaaniabggHiLdGccaWGHbWdamaaBaaaleaapeGaam OAaaWdaeqaaaaa@655D@

我们的二项式反演公式也就很明白了:

令${\{ {a_n}\} _{n \ge 0}}$和${\{ {b_n}\} _{n \ge 0}}$是两个数列,$s$为非负整数,$\forall n \geq s$,有

则有

好啦~ 反演到此为止,下面是娱乐环节!

一些神奇的恒等式变换

  • 如果你连基本恒等式都看不懂,说明你需要补习数学。

神奇变换1

有恒等式

k=0 n ( x k ) y k = k=0 n ( nx k ) (1+y) nk (y) k MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiaadIhaa8aabaWdbiaadUgaaaaaca GLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaapaqaa8qa caWGUbaaniabggHiLdGccaWG5bWdamaaCaaaleqabaWdbiaadUgaaa GccqGH9aqpdaaeWbWdaeaapeWaaeWaa8aabaqbaeqabiqaaaqaa8qa caWGUbGaeyOeI0IaamiEaaWdaeaapeGaam4AaaaaaiaawIcacaGLPa aaaSWdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0Ga eyyeIuoakiaacIcacaaIXaGaey4kaSIaamyEaiaacMcapaWaaWbaaS qabeaapeGaamOBaiabgkHiTiaadUgaaaGccaGGOaGaeyOeI0IaamyE aiaacMcapaWaaWbaaSqabeaapeGaam4Aaaaaaaa@641A@

作变换:

k=0 n ( x k ) y nk = k=0 n (x) k ( nx k ) (1+y) nk Tip:replace ywith 1 y MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiaadIhaa8aabaWdbiaadUgaaaaaca GLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaapaqaa8qa caWGUbaaniabggHiLdGccaWG5bWdamaaCaaaleqabaWdbiaad6gacq GHsislcaWGRbaaaOGaeyypa0ZaaabCa8aabaWdbiaacIcacqGHsisl caWG4bGaaiyka8aadaahaaWcbeqaa8qacaWGRbaaaaWdaeaapeGaam 4Aaiabg2da9iaaicdaa8aabaWdbiaad6gaa0GaeyyeIuoakmaabmaa paqaauaabeqaceaaaeaapeGaamOBaiabgkHiTiaadIhaa8aabaWdbi aadUgaaaaacaGLOaGaayzkaaGaaiikaiaaigdacqGHRaWkcaWG5bGa aiyka8aadaahaaWcbeqaa8qacaWGUbGaeyOeI0Iaam4Aaaaakiabl+ Uimjabl+UimjaabsfacaqGPbGaaeiCaiaacQdacaqGYbGaaeyzaiaa bchacaqGSbGaaeyyaiaabogacaqGLbGaaeiia8aacaaMe8+dbiaadM hapaGaaGjbVlaabEhacaqGPbGaaeiDaiaabIgacaaMe8+dbmaalaaa paqaa8qacaaIXaaapaqaa8qacaWG5baaaaaa@8004@

b nk = y nk , a n = k=0 n (1) k ( nx k ) (1+y) nk , MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqa a8qacaWGUbGaeyOeI0Iaam4AaaWdaeqaaOWdbiabg2da9iaadMhapa WaaWbaaSqabeaapeGaamOBaiabgkHiTiaadUgaaaGccaGGSaGaamyy a8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGH9aqpdaaeWbWdae aapeGaaiikaiabgkHiTiaaigdacaGGPaWdamaaCaaaleqabaWdbiaa dUgaaaaapaqaa8qacaWGRbGaeyypa0JaaGimaaWdaeaapeGaamOBaa qdcqGHris5aOWaaeWaa8aabaqbaeqabiqaaaqaa8qacaWGUbGaeyOe I0IaamiEaaWdaeaapeGaam4AaaaaaiaawIcacaGLPaaacaGGOaGaaG ymaiabgUcaRiaadMhacaGGPaWdamaaCaaaleqabaWdbiaad6gacqGH sislcaWGRbaaaOGaaiilaaaa@647D@

则有

k=0 n i=0 nk (1) i ( x k )( nkx i ) (1+y) nki = y n Tip:Usethe Inversion Formula MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaae WbWdaeaapeGaaiikaiabgkHiTiaaigdacaGGPaWdamaaCaaaleqaba WdbiaadMgaaaaapaqaa8qacaWGPbGaeyypa0JaaGimaaWdaeaapeGa amOBaiabgkHiTiaadUgaa0GaeyyeIuoaaSWdaeaapeGaam4Aaiabg2 da9iaaicdaa8aabaWdbiaad6gaa0GaeyyeIuoakmaabmaapaqaauaa beqaceaaaeaapeGaeyOeI0IaamiEaaWdaeaapeGaam4AaaaaaiaawI cacaGLPaaadaqadaWdaeaafaqabeGabaaabaWdbiaad6gacqGHsisl caWGRbGaeyOeI0IaamiEaaWdaeaapeGaamyAaaaaaiaawIcacaGLPa aacaGGOaGaaGymaiabgUcaRiaadMhacaGGPaWdamaaCaaaleqabaWd biaad6gacqGHsislcaWGRbGaeyOeI0IaamyAaaaakiabg2da9iaadM hapaWaaWbaaSqabeaapeGaamOBaaaakiabl+Uimjabl+Uimjaabsfa caqGPbGaaeiCaiaacQdacaqGvbGaae4CaiaabwgapaGaaGjbV=qaca qG0bGaaeiAaiaabwgacaqGGaGaaeysaiaab6gacaqG2bGaaeyzaiaa bkhacaqGZbGaaeyAaiaab+gacaqGUbGaaeiiaiaabAeacaqGVbGaae OCaiaab2gacaqG1bGaaeiBaiaabggaaaa@88C6@

神奇变换2

有恒等式

k=0 n (1) k ( n+x nk ) 1 1+k =( B n (x)+n n ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qacaGG OaGaeyOeI0IaaGymaiaacMcapaWaaWbaaSqabeaapeGaam4Aaaaaa8 aabaWdbiaadUgacqGH9aqpcaaIWaaapaqaa8qacaWGUbaaniabggHi LdGcdaqadaWdaeaafaqabeGabaaabaWdbiaad6gacqGHRaWkcaWG4b aapaqaa8qacaWGUbGaeyOeI0Iaam4AaaaaaiaawIcacaGLPaaadaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGymaiabgUcaRiaadUgaaaGaey ypa0ZaaeWaa8aabaqbaeqabiqaaaqaa8qacaWGcbWdamaaBaaaleaa peGaamOBaaWdaeqaaOWdbiaacIcacaWG4bGaaiykaiabgUcaRiaad6 gaa8aabaWdbiaad6gaaaaacaGLOaGaayzkaaaaaa@5EEC@

,其中$B_n(x)$是Bernouli多项式

变形为:

k=0 n ( x nk ) (1) k 1+k =( B n (xn)+n n ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiaadIhaa8aabaWdbiaad6gacqGHsi slcaWGRbaaaaGaayjkaiaawMcaaaWcpaqaa8qacaWGRbGaeyypa0Ja aGimaaWdaeaapeGaamOBaaqdcqGHris5aOWaaSaaa8aabaWdbiaacI cacqGHsislcaaIXaGaaiyka8aadaahaaWcbeqaa8qacaWGRbaaaaGc paqaa8qacaaIXaGaey4kaSIaam4AaaaacqGH9aqpdaqadaWdaeaafa qabeGabaaabaWdbiaadkeapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaaiikaiaadIhacqGHsislcaWGUbGaaiykaiabgUcaRiaad6gaa8 aabaWdbiaad6gaaaaacaGLOaGaayzkaaaaaa@5E51@

令${b_k} = \dfrac{( - 1)^k}{1 + k},{a_n} = \left( {\begin{array}{*{20}{c}}{B_n(x - n) + n}\\n\end{array}} \right)$

我们在反演公式2中进行变换

k=0 n ( x nk ) ( B k (xk)+k k )= (1) n 1+n MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiabgkHiTiaadIhaa8aabaWdbiaad6 gacqGHsislcaWGRbaaaaGaayjkaiaawMcaaaWcpaqaa8qacaWGRbGa eyypa0JaaGimaaWdaeaapeGaamOBaaqdcqGHris5aOWaaeWaa8aaba qbaeqabiqaaaqaa8qacaWGcbWdamaaBaaaleaapeGaam4AaaWdaeqa aOWdbiaacIcacaWG4bGaeyOeI0Iaam4AaiaacMcacqGHRaWkcaWGRb aapaqaa8qacaWGRbaaaaGaayjkaiaawMcaaiabg2da9maalaaapaqa a8qacaGGOaGaeyOeI0IaaGymaiaacMcapaWaaWbaaSqabeaapeGaam OBaaaaaOWdaeaapeGaaGymaiabgUcaRiaad6gaaaaaaa@5F38@

神奇变换3

有恒等式

k=0 n1 ( z k ) x nk1 = k=1 n ( zk nk ) (x+1) k1 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiaadQhaa8aabaWdbiaadUgaaaaaca GLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaapaqaa8qa caWGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaamiEa8aadaahaaWcbe qaa8qacaWGUbGaeyOeI0Iaam4AaiabgkHiTiaaigdaaaGccqGH9aqp daaeWbWdaeaapeWaaeWaa8aabaqbaeqabiqaaaqaa8qacaWG6bGaey OeI0Iaam4AaaWdaeaapeGaamOBaiabgkHiTiaadUgaaaaacaGLOaGa ayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIXaaapaqaa8qacaWGUb aaniabggHiLdGccaGGOaGaamiEaiabgUcaRiaaigdacaGGPaWdamaa CaaaleqabaWdbiaadUgacqGHsislcaaIXaaaaaaa@6668@

通过反演,得出:

k=0 n ( x k ) i=0 nk ( xi1 nki ) (z+1)= z n MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiabgkHiTiaadIhaa8aabaWdbiaadU gaaaaacaGLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaa paqaa8qacaWGUbaaniabggHiLdGcdaaeWbWdaeaapeWaaeWaa8aaba qbaeqabiqaaaqaa8qacaWG4bGaeyOeI0IaamyAaiabgkHiTiaaigda a8aabaWdbiaad6gacqGHsislcaWGRbGaeyOeI0IaamyAaaaaaiaawI cacaGLPaaaaSWdaeaapeGaamyAaiabg2da9iaaicdaa8aabaWdbiaa d6gacqGHsislcaWGRbaaniabggHiLdGccaGGOaGaamOEaiabgUcaRi aaigdacaGGPaGaeyypa0JaamOEa8aadaahaaWcbeqaa8qacaWGUbaa aaaa@6495@

神奇变换4

有恒等式

k=0 n1 ( z k ) x nk nk = k=1 n ( zk nk ) (x+1) k 1 k MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiaadQhaa8aabaWdbiaadUgaaaaaca GLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaapaqaa8qa caWGUbGaeyOeI0IaaGymaaqdcqGHris5aOWaaSaaa8aabaWdbiaadI hapaWaaWbaaSqabeaapeGaamOBaiabgkHiTiaadUgaaaaak8aabaWd biaad6gacqGHsislcaWGRbaaaiabg2da9maaqahapaqaa8qadaqada WdaeaafaqabeGabaaabaWdbiaadQhacqGHsislcaWGRbaapaqaa8qa caWGUbGaeyOeI0Iaam4AaaaaaiaawIcacaGLPaaaaSWdaeaapeGaam 4Aaiabg2da9iaaigdaa8aabaWdbiaad6gaa0GaeyyeIuoakmaalaaa paqaa8qacaGGOaGaamiEaiabgUcaRiaaigdacaGGPaWdamaaCaaale qabaWdbiaadUgaaaGccqGHsislcaaIXaaapaqaa8qacaWGRbaaaaaa @6926@

通过反演,得出

k=0 n ( z k ) i=0 nk ( zi1 nki ) (x+1) i+1 1 i+1 = x n+1 n+1 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs 0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabauaakeaaqaaaaaaaaaWdbmaaqahapaqaa8qadaqa daWdaeaafaqabeGabaaabaWdbiabgkHiTiaadQhaa8aabaWdbiaadU gaaaaacaGLOaGaayzkaaaal8aabaWdbiaadUgacqGH9aqpcaaIWaaa paqaa8qacaWGUbaaniabggHiLdGcdaaeWbWdaeaapeWaaeWaa8aaba qbaeqabiqaaaqaa8qacaWG6bGaeyOeI0IaamyAaiabgkHiTiaaigda a8aabaWdbiaad6gacqGHsislcaWGRbGaeyOeI0IaamyAaaaaaiaawI cacaGLPaaaaSWdaeaapeGaamyAaiabg2da9iaaicdaa8aabaWdbiaa d6gacqGHsislcaWGRbaaniabggHiLdGcdaWcaaWdaeaapeGaaiikai aadIhacqGHRaWkcaaIXaGaaiyka8aadaahaaWcbeqaa8qacaWGPbGa ey4kaSIaaGymaaaakiabgkHiTiaaigdaa8aabaWdbiaadMgacqGHRa WkcaaIXaaaaiabg2da9maalaaapaqaa8qacaWG4bWdamaaCaaaleqa baWdbiaad6gacqGHRaWkcaaIXaaaaaGcpaqaa8qacaWGUbGaey4kaS IaaGymaaaaaaa@707C@

总结

我们全文讨论了许多关于二项式系数的问题。二项式系数的恒等式可能远不止这些,还需要我们去发掘。

我们可以看到在恒等式变换部分,许多式子最终的形式都是非常美妙简洁的。在OI中,可以帮助加速运算。

参考资料

[1], Wikipedia, 二项式定理

[2], Wikipedia, Binomial theorem

[3], Miskcoo’s Space , 反演魔术:反演原理及二项式反演

[4], creatorx ,二项式反演公式

[5], Wolframmathworld, Binomial theorem

[6], Peoplesju, The Generalized Binomial Theorem

[7], Concrete Mathematics, 二项式系数

-------------本文结束了哦感谢您的阅读-------------