Fork me on GitHub

计算凸多边形的面积

题目

计算凸多边形的面积(pol)

问题描述
按一定的顺序(顺、逆时针)给出一个多边形的各顶点坐标,求该多边形的面积。
输入
第一行包含一个n,表示多边形顶点的个数( 0<=n<=100)
第2行到第n+1行,每行两个整数x,y(-10000<=x,y <= 10000)
输出
输出有且只有一行,包含一个数s,s为多边形的面积,保留一位小数
样例
pol.in
3
0 0
0 3
3 0

pol.out
4.5
题目及测试数据: https://github.com/Leoleepz/OI-Codes/tree/master/%E4%BB%BB%E6%84%8F%E5%A4%9A%E8%BE%B9%E5%BD%A2%E9%9D%A2%E7%A7%AF

  • 第一种方法即为朴素的向量方法。我们可以把凸多边形拆成多个三角形的面积去做。我们会发现,如果用原点去构造三角形来操作,最终结果就是(逆时针坐标乘积-顺时针坐标乘积)÷2.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <cmath>
#pragma warning(disable:4996)

#define ComputeTriangleVectorArea CTVA
using namespace std;
struct Point
{
double x, y;
};
vector <Point> Points;
double ComputeTriangleVectorArea(Point p1, Point p2, Point p3)
{
return (double)0.5 * ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y));
}
double Compute(vector <Point> PointSet)
{
if (PointSet.empty()) return 0.0;
double area = 0.0;
Point O;
O.x = O.y = 0;
for (register vector<Point>::iterator ii = PointSet.begin(); ii != PointSet.end() - 1; ++ii)
{
area += CTVA(O,(*ii),(*(ii + 1)));
}
area += CTVA(O,PointSet[PointSet.size() - 1], PointSet[0]);
return abs(area);
}
int N;
int main()
{
freopen("pol.in", "r", stdin);
freopen("pol.out", "w", stdout);
ios::sync_with_stdio(false);
cin >> N;
for (register int i = 1; i <= N; ++i)
{
Point tmp;
cin >> tmp.x >> tmp.y;
Points.push_back(tmp);
}
printf("%0.1lf\n",Compute(Points));
return 0;
}
  • 第二种方法我脑洞了一下,用了定积分的方法。定积分有正有负,依次求和,重复部分由于正负会相互抵消,最后剩下的总面积的绝对值就是多边形的面积。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <cmath>
#pragma warning(disable:4996)
using namespace std;
struct Point
{
double x, y;
};
vector <Point> Points;
inline double LinearIntegration(Point p1, Point p2)
{
return (double)0.5 * (p2.x - p1.x) * (p2.y + p1.y);
}
inline double ComputeArea(vector <Point> PointSet)
{
if (PointSet.empty()) return 0;
double area = 0;
for (register vector<Point>::iterator ii = PointSet.begin(); ii != PointSet.end() - 1; ++ii)
{
area += LinearIntegration((*ii),(*(ii + 1)));
}
area += LinearIntegration(PointSet[PointSet.size() - 1], PointSet[0]);
return abs(area);
}
int N;
int main()
{
freopen("pol.in", "r", stdin);
freopen("pol.out", "w", stdout);
ios::sync_with_stdio(false);
cin >> N;
for (register int i = 1; i <= N; ++i)
{
Point tmp;
cin >> tmp.x >> tmp.y;
Points.push_back(tmp);
}
printf("%0.1lf\n",ComputeArea(Points));
return 0;
}
-------------本文结束了哦感谢您的阅读-------------